
© 2015 Visual Components Oy ♦ PAGE 1 OF 13 ♦

VISUAL COMPONENTS [EXTENSIONS]

Adding localization
Next Generation | Version: November 20, 2015 | Example: Available upon request

Essentials has a multilingual user interface (MUI) that allows you to localize
the user interface and support multiple languages at runtime.

The setup involves mapping the content of controls to keys in resource
dictionaries using the ILocalizationService interface. A language resource
assembly is named Resource.[Language] and placed in the Visual
Components program files in order to be automatically recognized as a
supported language. Keys for localizing extensions can be placed in an
assembly that is named Resource.[Language].Additional.

The topics covered in this tutorial include:

•	 Minimal setup to provide localized controls in Essentials.

•	 Adding and using localization in extensions.

•	 Using design-time and runtime resources for extension development.

•	 Using command registry to import and export geometry.

Support
support@visualcomponents.com

Community
community.visualcomponents.net

mailto:support%40visualcomponents.com?subject=
http://community.visualcomponents.net

♦ PAGE 2 OF 13 ♦ Creating a language resource assembly

Creating a language resource assembly

Resources for supporting different languages should use a standardized set of keys. That is only the data
referenced by resource keys needs to be translated and localized for users.

Request and modify template

1.	 Request a localization project from Visual Components to use as a template for your target language.

2.	 Once the requested project has been received, create a copy of that project, and then rename that
copy to indicate the target language.

3.	 Run Visual Studio as an administrator, and then in the copied project folder open the Visual C#
project file.

Example: Copy of Resource.Dutch project folder renamed Resource.Korean

Creating a language resource assembly ♦ PAGE 3 OF 13 ♦

4.	 In Solution Explorer, rename your solution name and project name to indicate your target
language.

5.	 Access the properties of your project.

6.	 In the Application tab, set Assembly name and Default namespace to indicate your target language.

7.	 Click Assembly Information, and then set Title and Product to indicate your target language.

8.	 In the Build tab, set Platform to All Platforms.

9.	 In Solution Explorer, double-click Resource, and then edit the data for LanguageCultureName to
be the Culture Name of your target language.

♦ PAGE 4 OF 13 ♦ Creating a language resource assembly

Translate data and build assembly

The resource files in the Localization folder can be sent to translation services with a clear indication that the
keys should not be translated. You may directly edit the data for string elements in each resource file.

1.	 In Solution Explorer, expand the Localization folder, and then double-click Application.

2.	 Edit the data for RibbonTabItemFile to be the name of File in your target language.

3.	 On the Standard toolbar, click Save All to save your solution and project.

4.	 On the Build menu, click Batch Build.

5.	 In the Build column, click the Release check boxes for your project, and then click Build.

Creating a language resource assembly ♦ PAGE 5 OF 13 ♦

Testing localization

You must place a language resource assembly in your Visual Components program files. If you followed the
naming convention of Resource.[Language] the MEF will automatically discover and load assembly at runtime
and recognize your assembly as a supported language in Essentials.

1.	 Browse to the Output folder of your project, and then copy either the 32-bit or 64-bit version of your
assembly.

2.	 Browse to your Visual Components program files, and then paste your assembly.

3.	 Open Essentials, and then in the File tab click the Options tab.

4.	 In General, set Language to your target language, and then click OK.

5.	 Restart Essentials to verify the File tab is set to your target language.

♦ PAGE 6 OF 13 ♦ Creating additional language resources

Creating additional language resources

A naming convention of Resource.[Language].Additional allows you to add additional content to language
resources to support extensions.

1.	 In Visual Studio, close your solution.

2.	 Create a new WPF Application project and name that project Resource.English.Additional.

3.	 Access the properties of your project.

4.	 In the Application tab, set Output type to Class Library.

5.	 In the Build tab, set Platform to Any CPU and Output path to be the path to your Visual Components
program files.

Creating additional language resources ♦ PAGE 7 OF 13 ♦

6.	 In Solution Explorer, delete App.config, App.xaml and MainWindow.xaml.

7.	 In your project, add a Folder item and name that item Localization.

8.	 In the Localization folder, add a WPF Resource Dictionary item and name that item Additional.

9.	 In Additional, type the following code to define string elements for user controls in an extension.
<ResourceDictionary xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:s="clr-namespace:System;assembly=mscorlib">

 <!-- Localized Strings -->

 <!-- Add Localization comments before the entry (if any) -->

 <!-- *** -->

 <!-- Example Controls-->

 <s:String x:Key="Example.PaneHeader">Imports & Exports</s:String>

 <s:String x:Key="Example.ButtonImport">Import Geometry</s:String>

 <s:String x:Key="Example.ButtonExport">Export Geometry</s:String>

</ResourceDictionary>

10.	 In your project, add a WPF Resource Dictionary item and name that item Resource.

11.	 In Resource, type the following code to add and merge your additional resources into one file.
<ResourceDictionary xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:system="clr-namespace:System;assembly=mscorlib">

 <!-- In this project Language Culture Name is not needed. It is set in the main language project -->

 <!-- see http://msdn.microsoft.com/en-us/goglobal/bb896001.aspx -->

 <ResourceDictionary.MergedDictionaries>

 <ResourceDictionary Source="Localization/additional.xaml" />

 </ResourceDictionary.MergedDictionaries>

</ResourceDictionary>

12.	 On the Build menu, click Build Solution.

♦ PAGE 8 OF 13 ♦ Designing extension using resources

Designing extension using resources

The Designer in Visual Studio supports 32-bit assemblies. Otherwise, you can verify the design of a 64-bit
extension during runtime.

Define View Model

1.	 In Visual Studio, close your solution.

2.	 Create a new Class Library project and name that project UX.LocalizedExtension.

3.	 Add the following assemblies and namespaces as references:

•	 Caliburn.Micro

•	 System.ComponentModel.Composition

•	 System.Xaml

•	 VisualComponents.Create3D.Shared

•	 VisualComponents.UX.Shared

4.	 Access the properties of your project.

5.	 In the Build tab, set Platform target to x86 or x64 and Output path to be the path to your Visual
Components program files.

6.	 In your project, add two Folder items: one named ViewModels and the other named Views.

7.	 In the ViewModels folder, add a Class item and name
that item ImportExportViewModel.

8.	 In the Views folder, add a WPF User Control and name
that item ImportExportView.

9.	 In your project, add as an existing item the Light Theme
file located in the Dictionaries folder of your Visual
Components program files.

10.	 In your solution, add the existing projects for Resource.
English.Additional and Resource.[Language] that
you have created so far in this tutorial.

NOTE! The Light Theme file will be used as a design time resource for brushes and will not be copied when
you build your assembly.

Designing extension using resources ♦ PAGE 9 OF 13 ♦

11.	 In ImportExportViewModel, type the following code to define a basic View Model.
using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace UX.LocalizedExtension.ViewModels

{

 using Caliburn.Micro;

 using System.ComponentModel.Composition;

 using VisualComponents.Create3D;

 using VisualComponents.UX.Shared;

 [Export(typeof(IDockableScreen))]

 class ImportExportViewModel: DockableScreen

 {

 //use additional resource key for display name

 [ImportingConstructor]

 public ImportExportViewModel([Import] ILocalizationService localizationService)

 {

 this.DisplayName = localizationService.GetText("Example.PaneHeader");

 }

}

♦ PAGE 10 OF 13 ♦ Designing extension using resources

Design time of View

1.	 In ImportExportView, add two Button controls to the Grid element, and then assign your import
and export methods to those buttons.

 <Grid>

 <Button x:Name="importGeometryFileAsComponent"

 Content="Button" HorizontalAlignment="Left" Margin="10,10,0,0" VerticalAlignment="Top" Width="75"/>

 <Button x:Name="exportLayoutAsDrawing3D"

 Content="Button" HorizontalAlignment="Left" Margin="215,10,0,0" VerticalAlignment="Top" Width="75"/>

 </Grid>

2.	 In the UserControl element, add the following attribute to map to the VisualComponents.UX.Shared
assembly.

 xmlns:shared="clr-namespace:VisualComponents.UX.Shared;assembly=UX.Shared"

3.	 In the UserControl element, add the following child elements to add and merge resource dictionaries.
 <UserControl.Resources>

 <ResourceDictionary>

 <ResourceDictionary.MergedDictionaries>

 <ResourceDictionary

 Source="pack://application:,,,/UX.Shared;component/Controls/VCThemes/ThemeDictionary.xaml" />

 <ResourceDictionary

 Source="pack://application:,,,/UX.Shared;component/Controls/VCThemes/VCButton.xaml" />

 <ResourceDictionary

 Source="pack://application:,,,/UX.Shared;component/Controls/VCThemes/VCGrid.xaml" />

 <shared:DesignTimeDictionary

 Source="..\Light Theme.xaml" />

 <shared:LocalizationDesignTimeDictionary

 Source="pack://application:,,,/Resource.English.Additional;component/Resource.xaml" />

 </ResourceDictionary.MergedDictionaries>

 </ResourceDictionary>

 </UserControl.Resources>

Designing extension using resources ♦ PAGE 11 OF 13 ♦

4.	 Modify the markup for the Grid and Button elements to add styles and assign localized content.

 <Grid Style="{DynamicResource VCSimpleGridStyle}">

 <Button Style="{DynamicResource VCButtonStyle}"

 x:Name="importGeometryFileAsComponent"

 Content="{DynamicResource Example.ButtonImport}" HorizontalAlignment="Left"

 Margin="10,10,0,0" VerticalAlignment="Top" Width="75"/>

 <Button Style="{DynamicResource VCButtonStyle}"

 x:Name="exportLayoutAsDrawing3D"

 Content="{DynamicResource Example.ButtonExport}" HorizontalAlignment="Left"

 Margin="215,10,0,0" VerticalAlignment="Top" Width="75"/>

 </Grid>

5.	 On the Build menu, click Build Solution.

6.	 Open Essentials, and then set Language to English.

7.	 Restart Essentials to verify the content of your extension matches the language of Essentials.

♦ PAGE 12 OF 13 ♦ Importing and exporting geometry

Importing and exporting geometry

The command registry of Essentials can be used to execute commands that are of type IActionItem.

Retrieve commands

You can create an instance of ICommandRegistry to read and find available commands in Essentials.

1.	 Exit Essentials, and then return to your project in Visual Studio.

2.	 In ImportExportViewModel, add the following code to define methods for importing and exporting
geometry.

 //import geometry file as new component by referencing IActionItem id

 public void importGeometryFileAsComponent()

 {

 ICommandRegistry cmdRegistry = IoC.Get<ICommandRegistry>();

 IActionItem import3D = cmdRegistry.FindItem("ImportGeometry");

 import3D.Execute();

 }

 //export layout as geometry file by referencing IActionItem id

 public void exportLayoutAsDrawing3D()

 {

 ICommandRegistry cmdRegistry = IoC.Get<ICommandRegistry>();

 ActionItem<bool> export3D = cmdRegistry.FindItem("ExportToVectorDrawing") as ActionItem<bool>;

 export3D.Execute(true);

 }

3.	 On the Build menu, click Clean Solution, and then click Build Solution.

Importing and exporting geometry ♦ PAGE 13 OF 13 ♦

Test command execution

1.	 Open Essentials, and then add a layout to the 3D world.

2.	 In Imports & Exports, click Export Geometry.

3.	 Save the file as an .obj file type in the local Documents library for Essentials.

4.	 Open a new empty layout in the 3D world.

5.	 In Imports & Exports, click Import Geometry.

6.	 Open the exported .obj file created from the previous layout.

This concludes the tutorial.

	Adding localization
	Creating a language resource assembly
	Request and modify template
	Translate data and build assembly
	Testing localization

	Creating additional language resources
	Designing extension using resources
	Define View Model
	Design time of View

	Importing and exporting geometry
	Retrieve commands
	Test command execution

