
© 2015 Visual Components Oy ♦ PAGE 1 OF 10 ♦

VISUAL COMPONENTS [EXTENSIONS]

Using events to update controls
Next Generation | Version: November 20, 2015 | Example: Available upon request

Controls in an extension can be updated automatically based on an event
that occurs within Essentials, for example when a component is added or
removed from the 3D world.

The setup involves assigning a method to an event handler defined in
available type, for example ISimWorld. Depending on the context, methods
in the Screen class can be used to add and remove methods from event
handlers.

The topics covered in this tutorial include:

•	 Using event handlers to update data binded to controls.

•	 Tracking components that have been created during a simulation.

•	 Executing actions by using the properties of a control.

Support
support@visualcomponents.com

Community
community.visualcomponents.net

mailto:support%40visualcomponents.com?subject=
community.visualcomponents.net

♦ PAGE 2 OF 10 ♦ Creating a project in Visual Studio

Creating a project in Visual Studio

Visual Studio 2013 and Visual C# are used to create an extension that tracks components in the 3D world.

1.	 Run Visual Studio as an administrator.

2.	 Create a new Class Library project and name that project UX.ExampleComponents.

3.	 In your project, add references to the following assemblies and namespaces:

•	 Caliburn.Micro

•	 System.ComponentModel.Composition

•	 System.Windows.Interactivity

•	 System.Xaml

•	 VisualComponents.Create3D.Shared

•	 VisualComponents.UX.Shared

4.	 Access the properties of your project.

5.	 In the Build tab, set Platform target to either x86 or x64 depending on your version of Essentials.

6.	 Set Output path to be the path to your Visual Components program files.

7.	 In the Debug tab, set Start external program to be the .exe file for Essentials.

8.	 In Solution Explorer, delete Class1, and then add two Folder items: one named ViewModels and
the other named Views.

9.	 In the ViewModels folder, add a new Class item and name that item ComponentsViewModel.

10.	 In the Views folder, add a new WPF User Control item and name that item ComponentsView.

Creating code-behind ♦ PAGE 3 OF 10 ♦

Creating code-behind

Your View Model can be exported as a type of IDockableScreen and contain members for collecting and
updating data.

Define constructor and export attribute

1.	 In ComponentsViewModel, type the following code to create a class constructor and export
attribute.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace UX.ExampleComponents.ViewModels

{

 using Caliburn.Micro;

 using System.ComponentModel.Composition;

 using VisualComponents.Create3D;

 using VisualComponents.UX.Shared;

 [Export(typeof(IDockableScreen))]

 class ComponentsViewModel: DockableScreen

 {

 public ComponentsViewModel()

 {

 this.DisplayName = "Components";

 IEventAggregator eventAggregator = IoC.Get<IEventAggregator>();

 eventAggregator.Subscribe(this);

 }

 }

}

♦ PAGE 4 OF 10 ♦ Creating code-behind

Create bindable collection

A collection of objects can be created to contain data about components in the 3D world.

1.	 In the ComponentsViewModel class, type the following code to create members for collecting and
storing component data.

 #region Properties

 private BindableCollection<ISimComponent> _components { get; set; }

 //store component objects in property then bind to control

 public BindableCollection<ISimComponent> Components

 {

 get { return _components; }

 set

 {

 _components = value;

 NotifyOfPropertyChange(() => Components);

 }

 }

 #endregion

 [Import]

 private Lazy<IApplication> _app { get; set; }

 #region Methods

 public void getComponents()

 {

 //clear collection and then add components

 _components.Clear();

 foreach (ISimComponent comp in _app.Value.World.Components)

 {

 _components.Add(comp);

 }

 }

 #endregion

2.	 In the class constructor, add the following code to assign a new BindableCollection of type
ISimComponent to a member property.

 public ComponentsViewModel()

 {

 this.DisplayName = "Components";

 IEventAggregator eventAggregator = IoC.Get<IEventAggregator>();

 eventAggregator.Subscribe(this);

 this.Components = new BindableCollection<ISimComponent>();

 }

Creating code-behind ♦ PAGE 5 OF 10 ♦

Create and assign methods to update collection

A method may be added to an event handler if there is a match between the method and event handler signatures.
For example, you can create methods that can be called when a ComponentAdded or ComponentRemoving
event occurs in an ISimWorld instance.

1.	 In the ComponentsViewModel class, type the following code to define two methods for updating
the data in a member property.

 public void OnComponentAdded(object sender, ComponentAddedEventArgs e)

 {

 _components.Add(e.Component);

 }

 public void OnComponentRemoved(object sender, ComponentRemovingEventArgs e)

 {

 _components.Remove(e.Component);

 }

At the time of execution, some instances of a type may be unavailable until the initialization of the application,
main window and 3D world is completed in Essentials. In that case, you can use screen logic to assign
functionality to event handlers.

1.	 In the ComponentsViewModel class, type the following code to override the OnInitialized() method
inherited from the Screen class.

 override protected void OnInitialize()

 {

 ISimWorld world = _app.Value.World;

 world.ComponentAdded += this.OnComponentAdded;

 world.ComponentRemoving += this.OnComponentRemoved;

 getComponents();

 }

NOTE! The DockableScreen class is derived from the Screen class.

♦ PAGE 6 OF 10 ♦ Binding data to controls

Binding data to controls

A BindableCollection object can be a source of data for a control that you can style and customize as needed.

1.	 Access the Designer view for ComponentsView.

2.	 Add Button and ListBox controls to the Grid element, and then readjust the margins of the controls.

3.	 In the XAML editor, type the following code to bind the Button and ListBox elements to members in
the ComponentsViewModel class.

<UserControl x:Class="UX.ExampleComponents.Views.ComponentsView"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 mc:Ignorable="d"

 d:DesignHeight="300" d:DesignWidth="300">

 <Grid>

 <Button x:Name="getComponents"

 Content="Refresh" Margin="10,10,0,0" HorizontalAlignment="Left" Width="75" VerticalAlignment="Top"/>

 <ListBox x:Name="Components" Margin="10,40,10,0" HorizontalAlignment="Center" Width="280">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <Grid Margin="4">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto" SharedSizeGroup="Key" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <TextBlock Text="{Binding Name}" FontWeight="Bold" />

 </Grid>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

 </Grid>

</UserControl>

Testing event-driven updates ♦ PAGE 7 OF 10 ♦

Testing event-driven updates

1.	 On the Standard toolbar, click Start to debug your program and run Essentials.

2.	 In Essentials, add the Machine Tending basic demo layout to the 3D world to verify the names of
components in the layout are automatically listed in the Components panel.

3.	 Run the simulation, and then click Refresh to verify the names of dynamic components are listed in
the Components panel.

4.	 Reset the simulation, and then click Refresh to update the list of names in the Components panel.

5.	 In Visual Studio, stop debugging to exit Essentials.

♦ PAGE 8 OF 10 ♦ Tracking dynamic components

Tracking dynamic components

You can track dynamic components in a collection by using different event handlers.

1.	 In the ComponentViewModel class, type the following code to add methods for updating the
collection during a simulation.

 public void OnDynamicComponentAdded(object sender, ComponentAddedEventArgs e)

 {

 _components.Add(e.Component);

 }

 public void OnDynamicComponentRemoving(object sender, ComponentRemovingEventArgs e)

 {

 _components.Remove(e.Component);

 }

2.	 Modify the OnInitialize() method to assign functionality to the DynamicComponentAdded and
DynamicComponentRemoving event handlers.

 override protected void OnInitialize()

 {

 ISimWorld world = _app.Value.World;

 world.ComponentAdded += this.OnComponentAdded;

 world.ComponentRemoving += this.OnComponentRemoved;

 world.DynamicComponentAdded += this.OnDynamicComponentAdded;

 world.DynamicComponentRemoving += this.OnDynamicComponentRemoving;

 getComponents();

 }

3.	 Start debugging your program.

4.	 In Essentials, test data collection during a simulation
and when you reset a simulation.

5.	 Stop debugging your program.

Dynamic components added to end of list during simulation

Executing actions for selected items ♦ PAGE 9 OF 10 ♦

Executing actions for selected items

You can execute methods when setting the value of a property that is binded to a control.

TECHNICAL! By using the Caliburn.Micro framework, a selected item can be stored and retrieved automatically
by following a naming convention.

1.	 In the ComponentsViewModel class, type the following code to create a property for handling a
selected item in the Components property.

 private ISimComponent _selectedComponent { get; set; }

 //store selected item using prefix "Active", "Current" or "Selected"

 public ISimComponent SelectedComponent

 {

 get { return _selectedComponent; }

 set

 {

 _selectedComponent = value;

 NotifyOfPropertyChange(() => SelectedComponent);

 }

 }

2.	 Type the following code to import an instance of the ISelectionManager interface and define a
method for selecting a component in the 3D world.

 [Import]

 private Lazy<ISelectionManager> _selectManager { get; set; }

...

 public void selectComponent()

 {

 //select component in 3D world based on selected item in collection

 if (_selectedComponent != null)

 {

 _selectManager.Value.Clear();

 _selectManager.Value.SetSelection(_selectedComponent);

 }

 }

3.	 In the member property for a selected item, add the following code to call your method for selecting
a component.

 public ISimComponent SelectedComponent

 {

 get { return _selectedComponent; }

 set

 {

 _selectedComponent = value;

 NotifyOfPropertyChange(() => SelectedComponent);

 selectComponent();

 }

 }

♦ PAGE 10 OF 10 ♦ Executing actions for selected items

4.	 In ComponentsView, access the XAML editor.

5.	 Add the following markup in the ListBox element to bind the SelectedItem property to the member
property for a selected item in your View Model.

 <ListBox x:Name="Components" SelectedItem="{Binding SelectedComponent, Mode=TwoWay}"

 Margin="10,40,10,0" HorizontalAlignment="Center" Width="280">

6.	 On the Standard toolbar, click Save All, and then click Start to test your project in Essentials.

7.	 In Essentials, add the Machine Tending basic demo layout to the 3D world.

8.	 In Components, click an item in the list box to select a component in the 3D world.

NOTE! There are different ways to execute actions for events in a control. One approach involves the use of
messages to attach events to actions and use events to invoke actions.

This concludes the tutorial.

	Using events to update controls
	Creating a project in Visual Studio
	Creating code-behind
	Define constructor and export attribute
	Create bindable collection
	Create and assign methods to update collection

	Binding data to controls
	Testing event-driven updates
	Tracking dynamic components
	Executing actions for selected items

