

 | PAGE 1 OF 11 |

Support

support@visualcomponents.com

Visual Components Forum

forum.visualcomponents.com

WinMOD Signal Connector

WinMOD Signal Connector add-on can be used to automate connecting variables in

WinMOD and Visual Components. Add-on creates two files. Signal list file (.txt) can be used

to create operands in WinMOD and also expose them for connectivity. Connection file (.xml)

can be used to import connectivity setup in VC. XML is needed as there’s no API at the

moment to create connections in VC.

How to install

To install the add-on copy add-on folder under your Documents\Visual

Components\4.X\My Commands folder. This will add a new button under Connectivity tab.

.

How to use

The idea on the add-no is that you may define which variables are connected on the VC

model. This is done by using templates. For every component in the layout you can

associated a template file with any string property in the components. By default add-on

uses Category property which is a standard property in every VC component. With a

Category value of Conveyor add-on will try to find a template called Conveyor.txt under add-

on’s Templates folder. If template is found then add-on uses the template to define

connected variables for that component on the output files.

Basic workflow is to first model simulation components compatible with co-simulation. Then

you create template for every component type. You build a layout and use add-on to export

variables for WinMOD. Then you build the WinMOD model for co-simulation. Finally you use

the add-on to connect both WinMOD and VC layout.

https://forum.visualcomponents.com/

 | PAGE 2 OF 11 |

Component modeling

In component modeling you can use component properties, signal behaviors and behavior

properties and the add-on supports them all. Connected properties should either Boolean,

Integer and Real so that they are compatible with WinMOD operand types which are Binary,

Digital and Analog.

Templates

When creating templates you can start by copying Example.txt template, rename it to some

other type and define variables inside the file. File format is basically comma separated file

(.csv) except the separator character is tab (by default) or semicolon “;”. First row in the file

is the header and you should not modify it. Following lines contain the connection variables.

Template has total of 28 columns. 27 columns are standard WinMOD columns and the final

28th column is the VC variable. Most of the columns are optional so you don’t need to fill

any value to them. Here we list only the most important columns which you need to pay

attention to. These important 7 columns in the template file are called symbol, type,

default value, definition internal format, signal name, signal type, vc variable. Columns

symbol, type, default value and definition internal format are used in creating operands in

WinMOD. Columns signal name and signal type are used in exposing connection variable in

WinMOD communication element. Last column vc variable marks the VC variable.

Below there’s an example template for type Conveyor. Note that it’s easiest to modify

template files using Excel.

In template’s variable fields symbol and signal name usually have the same value. Value

syntax is COMP.xxx where COMP is a placeholder for the device ID and xxx is the variable in

WinMOD. In the default template naming convention is used where COMP.>$xxx notation is

used for inputs coming to VC from WinMOD and COMP.<$xxx notation is used for outputs

going from VC to WinMOD.

 | PAGE 3 OF 11 |

Field type is the operand type in WinMOD and its value should be either BM (binary), DM

(digital) or AM (analog). Field default value can have a default value for the operand but it

can also be empty. Field definition internal format can have some user-defined WinMOD

format but it can also be empty. Field signal type is the type in WinMOD communication

element and its value should be either BI (binary input), BO (binary output), DI (digital

input), DO (digital output), AI (analog input) or AO (analog output).

Last field vc variable should have the value given as one of the following notations:

COMP.xxx for component property of name xxx.

COMP.xxx for signal behavior of name xxx.

COMP.yyy.xxx for behavior property, where yyy is the behavior name and xxx is the property

name.

Again COMP is a placeholder on previous notations. Placeholder is replaced with the

component name on the output.

Running the example template Conveyor.txt to a component with name CNV_1 will produce

a following entry in the signal list .txt and connection .xml:

Figure 1 Signal list file entry

Figure 2 Connection xml entry

 | PAGE 4 OF 11 |

Add-on settings

Launching the add-on will open the action panel with some settings:

Choose template by this property value is the property name which you use to associate the

components with your templates. By default it uses the value of Category. Category is

convenient property to be used for selecting the template because you can use the cell

graph to quickly view which device types you have on your layout. In the following example

of a cell graph you see that there are 5 types (Categories) for which 4 have templates and

Other Category lists components that don’t need to be connected.

 | PAGE 5 OF 11 |

Export only selected components setting allows you to export signals only from selected

components. If unchecked all components in the layout are used for export if they have a

matching template.

List separator character setting lets you choose if you want to use tab (default) or

semicolon “;” as the list separator character in templates and the output signal list file.

WinMOD hostname and WinMOD port settings define where your WinMOD server will be

running. These settings affect the settings on the connection xml.

WinMOD Com element path points to the location where the WinMOD variables are on the

connection xml. Path name is xxx\yyy\zzz where xxx is the name of the WinMOD simulation,

yyy is the name of layer and zzz is the name of the com element. In the picture below

elements of example path CoSim_Coupling\active_layer\CoSim are highlighted on the

WinMOD project.

Export button in action panel opens up a save dialog where you define the name and

location of the signal list text file. Connection xml is saved on the same location with the

same name but only with .xml file extension instead of .txt.

 | PAGE 6 OF 11 |

Signal list text file

Text file that you create with the add-on can be used on WinMOD to create operands and

expose them for connectivity. To create operands right-click over project’s global operands

and select Operands Export / Import / Import from File.

Use the following settings on the dialog and click Next.

 | PAGE 7 OF 11 |

On the final page make the following column mapping and click Finish.

Wizard will create global operands from the signal list. If you already had operands with the

same name then wizard uses the old operand and doesn’t create a new one. You can now

use these operands in your WinMOD simulation to create the simulation behaviors for

drives etc.

 | PAGE 8 OF 11 |

Another function that the signal list text files serves is to define the signals on a

communication element in WinMOD. To define these signals first place a new

communication element on your WinMOD simulation. Then right-click over it and select

Signals Improt / Export / Import from file.

Use the same Import format settings as when creating operands but define column mapping

like in the picture below.

 | PAGE 9 OF 11 |

On final page of the Import wizard use following settings and click Finish.

Wizard will create signals on the communication element.

Before you start to test connectivity make sure that connectivity is enabled on the WinMOD

projects by right-clicking the project and selecting Properties and Communication tab.

Enable incoming connections and set the port for them. After that start WinMOD simulation

and you should be able to see variables when you connect to WinMOD server from Visual

Components.

 | PAGE 10 OF 11 |

Connection XML file

After WinMOD operands are created and exposed for connectivity it’s time to define

variable pairings on Visaul Components model. You could do pairings manually but the add-

on’s connection XML can be used to automatically define pairings for you. Just go to

Connectivity tab and under Configuration group click Import. Select your connection XML file

and click Open. VC should recognize the file and create WinMOD server entry and variable

pairings under it like shown on the picture below.

Now enable the server connection and start the simulation and co-simulation should run. If

connection is not working make sure that WinMOD hostname and port are correctly set and

also check that COM element path in variables is set correctly. If COM element path is

wrong you can use add-on again and set path correctly and after that import new

connection XML.

 | PAGE 11 OF 11 |

Example

There’s an example bundled with this add-on that you can use to test the add-on itself.

Conveyor System.vcmx is the VC model and Conveyor System WMP contains the WinMOD

project. Before trying the example make sure you have the add-on properly installed.

Open example project on Visual Components (4.3 or newer). You can study the layout for

example on Cell Graphs to see which kind of devices there are in the layout. In this case

there are 4 conveyors, 1 shuttle, 5 sensors and 1 feeder that need to be connected to

WinMOD. For all device types there’s a template in the add-on. Use the add-on on the

model and save signals to .txt and .xml files. Default setting should work on the add-on.

Now open the WinMOD project (Conveyor System.wmp). Co-sim operands are already

creasted on the example as globals. On CoSim_Coupling simulation there’s an

communication element that you need to define the signals into. Import signal list .txt to

com element like shown on this manual. Import should define 8 inputs and 5 outputs.

Next go back to Visual Components and import communication .xml. Establish a connection

to server and start simulation on both WinMOD and VC. You can now test the co-simulation

by enabling the line on WinMOD’s HMI simulation and creating small and big blocks on the

line. WinMOD will feed conveyor speeds and shuttle position to VC model and VC will send

sensor information back to WinMOD. In this example there’s no PLC involved but the line

logic is built into the WinMOD project and its PLC simulation. Example logic will route small

blocks to right lane and big blocks to left lane.

