
Jamal Muhamm Jamal Muhammad
1

EMULATION WITH VC PREMIUM/ROBOTICS AND POLYSCOPE(UR ROBOT GRAPHICAL

PROGRAMMING ENVIRONMENT)

Jamal Muhamm Jamal Muhammad
2

Table of Contents
Getting started with PolyScope (Universal robots graphical programming environment) 3

How to Post-Process a robot program from Visual Components Premium 4.0 .. 8

Reading the imported robot program into PolyScope .. 11

Server-Client connection and emulation ... 16

Appendix .. 19

Universal Robots RTDE connection plugin .. 19

RTDE protocol operation principles .. 19

Connection settings ... 20

Controller address space ... 21

Supported data types .. 23

Performance .. 23

Q&A ... 24

Virtual Robot Controller (VRC) .. 24

Offline Robot Programming (OLP) ... 25

Post Processor for robot .. 25

Jamal Muhamm Jamal Muhammad
3

Getting started with PolyScope (Universal robots graphical programming

environment)
First thing the user needs to do is to get the Virtual Machine where the URSim programs are installed

/stored. There are 3 different programs for the 3 different versions of Universal Robot. URSim UR3, URSim

UR5 and URSim UR10 are the different controllers for the different instances of robots. You can get the

Virtual Machine from S Drive.

Open the virtual machine and double click on the icon [URSim UR5]

Select the [GO to initializing screen]

Jamal Muhamm Jamal Muhammad
4

First press [OFF] button

Second press [ON] button

Third press [START] button

Final state looks like this –

Finally press the [OK] button.

Go to File > Exit.

Jamal Muhamm Jamal Muhammad
5

Press [Program Robot]

There are 3 different folders for storing the robot programs for UR3, UR5 and UR10. In the VM workstation

already there some programs stored in those folders for the ease of user.

Now Press [Load Program] and select any of the programs stored in the Folder [Programs UR5] (as we are

programming UR5 in this example) –

Jamal Muhamm Jamal Muhammad
6

Go to the Tab > Graphics and then press Play

Jamal Muhamm Jamal Muhammad
7

Pressing the [play] button will automatically take us to the Tab > [Automove]. Press and Hold the [Auto]

button until the robot is ready for simulation.

Now the final state looks like this, the robot controller is ready for simulation. Press the OK Button.

Jamal Muhamm Jamal Muhammad
8

Now we can run the simulation by pressing the Play button.

How to Post-Process a robot program from Visual Components Premium

4.0
Open the Layout [UR5_testing.vcmx], there is a sample program with the UR5 robot in the robot. The target

here are –

a. Program the UR5 robot in VC Premium/Robotics.

b. Post process the UR5 robot program using the Post-Processor. User can find the Post-Processor

from Visual Components community.

c. Establish connection in between VC Premium/Robotics(Main machine) and PolyScope(in Virtual

Machine)

d. Export the post-processed program to Virtual Machine and load the program in PolyScope.

e. Run robot program in PolyScope and emulate the same movement in VC Premium/Robotics.

Run the program in VC Premium/Robotics and observe the robot movement.

Jamal Muhamm Jamal Muhammad
9

Now using the post-processor export the robot program from VC to UR robot program file (*.script)

You can find the Post Processor in Program tab as shown in above screenshot. When we open the post

processed file it shall be something like below.

Jamal Muhamm Jamal Muhammad
10

Copy the program to a USB Drive. The way we will be transferring the robot program from our main

machine to virtual machine is by using USB drive.

When we insert a USB drive it is usually found in the virtual machine, now the user needs to disconnect it

from virtual machine and connect it to the main machine. It can be done following way –

a. Go to VMware Workstation

b. Go to VM > Removable Devices > Silicon Motion USB Flash Disk(it will be different in your case) >

Disconnect(Connect to host)

Now user needs to copy-paste the program into the USB disk and then re-connect the USB disk with the

VMware. Now user needs to use the tool –

VM > Removable Devices > Silicon Motion USB Flash Disk (it will be different in your case) >

Connect(Disconnect from host)

Later Visual Components will develop a FTP connection to send/receive files in between Main machine &

Virtual Machine.

Jamal Muhamm Jamal Muhammad
11

Reading the imported robot program into PolyScope
Go to [Structure] > Press [Script Code] and this will create a (Script) in the Robot Program tree.

Go to Command tab and select File from the dropdown list

Jamal Muhamm Jamal Muhammad
12

Then press the Edit button.

Then Press (Open)

Jamal Muhamm Jamal Muhammad
13

Now finally we need to select the imported robot program (post processed from VC Premium/Robotics)

and load it to PolyScope.

It will be read by the editor like below if reading is successful.

Jamal Muhamm Jamal Muhammad
14

Now press save and then exit.

Now the user can see that loaded program as following.

Jamal Muhamm Jamal Muhammad
15

Now the user can delete the rest of the Program from the Program Tree and keep only the Script program if

he wishes.

Now user can go to Graphics > run the simulation.

Jamal Muhamm Jamal Muhammad
16

Server-Client connection and emulation

Now we need to find the IP address of the Virtual Machine. We can do it in following way -

Open Terminal (In Linux [VMware])

Type >> hostname -I

As an example we can assume we got the IP address of the VMware as

>> 192.168.100.XXX

Go to Tab Connectivity > Universal Robots RTDE > Server > Edit Connection

Then we set the IP address as we got from virtual machine. RTDE port number should be 30004. Then press

[Test Connection], if succeeded press [Apply].

Jamal Muhamm Jamal Muhammad
17

Now we need to connect the server.

After connection established go to Server > Joints from controller > (right mouse button click) Add Variables

Now connect the Variables in between Client(VC software) and Server(PolyScope in VMware), the variables

are -

RTDE Joints(Client_String Variable) and # actual_q(Server_Vector Variable) ………… which needs to be

connected. This is actually the joint values of robot constantly exported from PolyScope to VC software.

Jamal Muhamm Jamal Muhammad
18

The Connected Variables section looks like following

Now user needs to press [Run] in both VC software and PolyScope. User will see the emulation in action.

Jamal Muhamm Jamal Muhammad
19

Appendix

Universal Robots RTDE connection plugin
Can connect to Universal Robots’ CB3-series robot controllers that have the RTDE interface. The RTDE (Real

time data exchange) interface is available (and always enabled) in controllers with software version

3.2.19171 or newer*. The same RTDE interface is also available in the URSim robot controller simulator,

which is provided free of charge as a virtual machine on UR support website.

*This specific control software version requirement is from UR’s own sample RTDE client implementation.

The support website article just says control software version 3.3 or newer.

More information about the RTDE interface:

https://www.universal-robots.com/how-tos-and-faqs/how-to/ur-how-tos/real-time-data-exchange-rtde-

guide-22229/

Plugin capabilities:

Server capabilities (always the same within this plugin):

RTDE protocol operation principles
The RTDE interface provides a cyclic stream of value updates from the controller, and listens for inputs. The

interface updates ie. sends and handles data packages at a fixed frequency. The RTDE interface is based on

a binary application level protocol transmitted over (insecure) TCP/IP socket communication. The robot

controller uses TCP port 30004 for the interface. The connection plugin’s RTDE client implementation uses

an automatically assigned (by .NET or possibly Windows) port for the socket.

The basic operation principle is that first the client configures with the server the data it wants to receive

and data it wants to send. This is done in the “configuration” mode. After configuration has been set, the

client can request the controller to enter “run” mode where the controller sends the requested data at the

fixed 125 Hz frequency, and the client can send its data at the rate it prefers. The “run” mode can also be

paused by request of the client to return to the “configuration” mode.

https://www.universal-robots.com/how-tos-and-faqs/how-to/ur-how-tos/real-time-data-exchange-rtde-guide-22229/
https://www.universal-robots.com/how-tos-and-faqs/how-to/ur-how-tos/real-time-data-exchange-rtde-guide-22229/

Jamal Muhamm Jamal Muhammad
20

The data packages the client and controller send to each other are defined the “configuration” mode with

input and output recipes. Input is data flow from client to controller, and output is data flow from

controller to client. The recipes contain one or more variables from a known fixed set, and the associated

data packages contain values for all variables in the recipe.

The current version of the RTDE protocol supports only a single output recipe per client, but up to 255 input

recipes can be defined per client. Further, it is not possible to remove an input recipe without

disconnecting, only to create new ones. This means that adding or removing a variable pair, or activating or

deactivating a variable group always causes a recipe update. Since the recipe update can be only done in

the “configuration” mode, the RTDE client implementation automatically requests pausing from the

controller and then either redefines the output recipe shared between all variable groups or registers a

new input recipe for the activated variable group.

The RTDE protocol doesn’t provide any way to poll the controller for value updates. This causes some

limitations that differentiate the RTDE connection plugin from others. The RTDE connection plugin manages

a local cache of the variable values for all configured recipes (active variable groups). This allows using cyclic

update mode to read output recipe values at any desired frequency, and sending whole input recipe data

to the controller in event-based update mode. However, since the output recipe updates are received and

input recipe data is sent asynchronously, the update delay timing functionality of Connectivity core doesn’t

really work with the RTDE plugin. The times measured are only processing times to get data in or out of the

cache, they don’t include the network delay or even how old the received output recipe data is when the

cache is read using cyclic update mode.

Also note that since the controller handles the RTDE input recipe packages at a fixed rate (125 Hz nominal),

it will miss values if sent faster than that from the simulation. The controller uses only the last received

value for each variable if multiple values are received during the controller’s update cycle. The controller

input variable values are retained so they don’t need to be sent at a fixed rate. Mask variables are an

exception, they don’t retain their values between update cycles, see “Input mask variables”.

Connection settings
The connection settings include the robot controller’s IP address or host (dns) name, the RTDE port on the

controller, and timeout. The port should always be the same default value 30004, it is included just for

future proofing. The timeout (in milliseconds) is used for initial connect and synchronous operations

including all configuration changes to recipes.

Jamal Muhamm Jamal Muhammad
21

Controller address space
The RTDE interface specifies a fixed set of variables that each can be either read or written. The input

variables of the controller can’t be read by the client and output variables of the controller can’t be written.

However, there are some separate variables that enable reading and writing the same thing e.g. Digital

outputs of the controller.

Example:

Input to controller (write-only in Connectivity feature): standard_digital_output

Output from controller (read-only in Connectivity feature): actual_digital_output_bits

The RTDE address space doesn’t have hierarchy, and variables can only be read or written as a whole as

part of recipe data packages. However, since the Connectivity core only handles basic data types, the RTDE

connection plugin provides access to components of vector variables and single bits of integer variables.

The single bit access is needed because the controller’s digital inputs and outputs are only available as

integers, not single Booleans. The connection plugin also provides read access (writing not supported) to

vector output variables from the controller as strings. The vector’s elements are converted to decimal

strings, using full precision for floating point values and a period “.” as decimal delimiter. The element

strings are then joined with a single space character as delimiter.

The RTDE connection plugin uses a hardcoded information model of the server address space, which

provides browsing capability. This hardcoded model corresponds to the UR controller version 3.3. The RTDE

protocol doesn’t include functionality for retrieving information about available variables on the controller.

If new controller software versions add variables to the interface, those won’t be accessible without

updating the connection plugin.

The browsing functionality presents the variables in a more convenient hierarchical folder structure, and

creates child variable nodes for vector components and bits in integers. Vectors can also contain integer

variables, which can also be accessed bit by bit.

Jamal Muhamm Jamal Muhammad
22

Vector variable browse example:

Note that the robot RTDE interface variables use radians as unit of angle in variables such as current and

target joint values. This means that they can’t be directly paired to Value properties of DOF objects in the

UR robot Components. As of 27.1.2017, Jamal should have updated the UR robot components in eCat to

include a Python script, a string signal and an interface for updating the component’s joint values from the

actual_q variable on the robot controller. The script receives events from the signal, parses the value and

uses immediate move to jump the robot to the received pose.

Input mask variables

Four inputs to controller (see below) also have separate mask variables. These masks act as a filter for

applying the values sent by the client. The idea is that the RTDE client doesn’t necessarily want to overwrite

all bits in e.g. the variable that controls the robot’s “standard digital outputs”. This allows controlling some

bits of a variable from the robot program on the controller and some from RTDE clients. However, the RTDE

interface doesn’t allow more than one client to access the same controller input variable. These masks

create some limitations for using the input variables in Visual Components.

Example: Conditions for modifying standard digital output state on the controller.

1. Variables standard_digital_output (UINT8) and standard_digital_output_mask (UINT8) must be

registered in the same input recipe.

2. For each bit to apply (set to high or low state) in standard_digital_output, the value of

standard_digital_output_mask must have a 1 in the corresponding bit. These must arrive in the same

input recipe data package, meaning that setting the mask earlier or later won’t result in the digital

outputs actually changing on the controller. It seems that the mask is always reset to zero at the

controller after processing each input data package.

Jamal Muhamm Jamal Muhammad
23

Effects of those conditions for the Connectivity feature are:

1. Controller input variables with masks must have the variable and mask variable in the same variable

group.

2. If event-based update mode is used, the mask should be set to a constant value, otherwise value

changes could get lost due to the changes being transmitted in different input data packages.

Supported data types

The Universal Robots RTDE connection plugin supports access to all available variables. All signed and

unsigned integer variables can be both paired directly or the individual bits paired as Booleans. Vectors can

be read as strings, but cannot be written as a whole.

Table 1: Supported data types of the RTDE interface

RTDE type .NET type Remarks

UINT8 System.Byte

UINT16 System.UInt16

INT32 System.Int32

UINT32 System.UInt32 VC integers are only signed 32 bit

UINT64 System.UInt64 VC integers are only signed 32 bit

DOUBLE System.Double

VECTOR3D

System.String

Converted to a single string by the connection plugin when read
from the controller. Elements (3 x DOUBLE) can be read and
written separately.

VECTOR6D

System.String

Converted to a single string by the connection plugin when read
from the controller. Elements (6 x DOUBLE) can be read and
written separately.

VECTOR6INT32

System.String

Converted to a single string by the connection plugin when read
from the controller. Elements (3 x INT32) can be read and
written separately.

VECTOR6UINT32

System.String

Converted to a single string by the connection plugin when read
from the controller. Elements (6 x UINT32) can be read and
written separately.

Performance
The communication delay is mostly defined by the UR controller’s fixed update rate. Note that the timing

functionality of the Connectivity core is not accurate with this plugin, see 0 for more info.

Using event-based update mode is recommended for variable groups with data flow from server to

simulation unless the update rate is too high for the simulation to handle.

For simulation to server data flow, cyclic update mode is recommended, but setting update rate higher

than 125 Hz doesn’t provide any benefit. The controller uses only the last received value for each variable if

multiple values are received during the controller’s update cycle. Note that event-based update mode from

simulation to server may send lots of updates that get lost due to the controller’s update rate, and mask

variables may not work as expected due to the mask and the masked value arriving in different input recipe

value update packets.

Jamal Muhamm Jamal Muhammad
24

Q&A
01. CONNECT POLYSCOPE TO 4.0 PRODUCT

 Does this only work with VC Premium/Robotics? (Yes/No, but with limitations)

 Only Premium and Robotics support Path statements.

 What limitations would there be for Essentials and Professional, which don’t support Path

statement?

Ans : The data connection works with any product that has the Connectivity feature.

02. JOGGING ROBOT

 Can you use Move tab in Polyscope to jog robot in 3D world in real-time? (Yes/No)

Ans : Yes, but the simulation needs to be running in VC for automatic updates because that’s how
the Connectivity feature works.

 Can you use Jog mode in 3D world to update robot in Polyscope in real-time? (Yes/No)

Ans : Not directly. A workaround would be to send joint values to general purpose registers on
Polyscope and have a robot program running that drives the robot to that position. Again the
simulation needs to be running on VC side for automatic updates.

03. IMPORT AND SIMULATE POLYSCOPE PROGRAM WITH 3D ROBOT

 File formats? (XML,JSON or something else)

 Table specifying what Polyscope statements are converted to in 3D robot program.

 Spec would need to account for differences in 4.0 products

 Are digital I/O imported? what happens to the analog I/O?

 I would expect a conflict with signal mappings defined in Action Script.

 If you import and export that same program, would it work the same in Polyscope or would there

be lost data?

Ans : The whole point of this project is emulating UR Virtual Controller into VC
Premium/Robotics/Robotics, this question is out of consideration. To my knowledge the
conversion is one way only VC -> Polyscope.

04. EXPORT AND ANIMATE 3D ROBOT PROGRAM IN POLYSCOPE

 File formats? (XML,JSON or something else)

Ans : File format is plain text URScript Programming Language. File extension *.script ; The binary
*.urp format is not supported.

 Table specifying what statements are supported and converted to in Polyscope program.

 Does it really support conversion of Set statements since in Polyscope you would always update the

payload of the EOAT after grasp or release action?

Virtual Robot Controller (VRC)
The Virtual Robot Controller (VRC) Interface, that has been developed by automotive companies, robot and

simulator manufacturers, enables to integrate the software of robot controllers into simulation systems via

a standard interface. By this, the VRC-Interface enables controller simulation with high precision and a

crosswise coupling of any controller software with any simulation system.

Jamal Muhamm Jamal Muhammad
25

Offline Robot Programming (OLP)
Off-line programming (OLP) is a robot programming method where the robot program is created

independent from the actual robot cell. The robot program is then uploaded to the real industrial robot for

execution. In off-line programming, the robot cell is represented through a graphical 3D model in a

simulator. Nowadays OLP and robotics simulator tools help robot integrators create the optimal program

paths for the robot to perform a specific task. Robot movements, reachability analysis, collision and near-

miss detection and cycle time reporting can be included when simulating the robot program. OLP does not

interfere with production as the program for the robot is created outside the production process on an

external computer. This method contradicts to the traditional on-line programming of industrial robots

where the robot teach pendant is used for programming the robot manually. The time for the adoption of

new programs can be cut from weeks to a single day, enabling the robotization of short-run production.

Post Processor for robot
A Post Processor defines how robot programs must be generated for a specific robot controller. A Post

Processor is a key component of simulation and offline programming of industrial robots. The Post-

Processor works with the off-line programming software to make sure the robot motion statement/output

or program is correct for a specific robot build. The Post Processor controls the format and syntax of the

program that is generated for the controller that controls a specific robot.

