Jamal Muhammad

EMULATION WITH VC PREMIUM/ROBOTICS AND POLYSCOPE(UR ROBOT GRAPHICAL
PROGRAMMING ENVIRONMENT)

Jamal Muhammad

Table of Contents

Getting started with PolyScope (Universal robots graphical programming environment)c.cccceccveevveenee. 3
How to Post-Process a robot program from Visual Components Premium 4.0.........ccccceeeeeeeiiiiiieeeeeeeecccinneeen, 8
Reading the imported robot program iNto POIYSCOPEuuiiiiiiieie ettt e e e e e e e 11
Server-Client connection and @mMUIATION........cc.iiiiiiiiiieie et 16
FAY o7 o T=] o T [SRR 19
Universal Robots RTDE cONNECLION PIUGIN ..cciieviiiiiiiiiee ettt srtee e s iree e s sare e e s sate e e s sneeeeesans 19
RTDE protocol 0peration PrinCiPIESiciccuiiie e ccctee ettt ectte e e e ctte e e e st e e e e ssaraeeesntaeeeestaeeesneneaesnns 19
CONNECTION SEEEINES vttt nnnn 20
(0o o] a o] [T - [o [o [T o =1 ST 21
U] o] o Jo g d=Te [1 &= IR AV o 1T TSP 23
PRI OIMANCE ...eetee ettt ettt et e s e e bt e e s bt e s bt e e e ab e e s bt e e s ab e e e abee e abee s bt e e sabeesabeeebteesbeeeatean 23
QA ettt b e bt e bt e s h e e ea et et e bt e bt e bt e eh et eae e e At e e teeebeeeheeeateeabeeabe e be e beeareeanees 24
AV g (V=TI 3{e] o To] A @eY oY Ao | LYo AV () IS 24
(0] TTaT=l 20e] o Yo Al oY ={r=TaaT oo 1T oY= (1 1 = H SRS 25

[T Y el o Tol=IXYo gl (o] gl 0] o Yo N URURRR R PTR 25

Jamal Muhammad

Getting started with PolyScope (Universal robots graphical programming

environment)

First thing the user needs to do is to get the Virtual Machine where the URSim programs are installed
/stored. There are 3 different programs for the 3 different versions of Universal Robot. URSim UR3, URSIim
UR5 and URSim UR10 are the different controllers for the different instances of robots. You can get the
Virtual Machine from S Drive.

Open the virtual machine and double click on the icon [URSim UR5]

s @ Tips for getting
» Keyboard Set:

URSIimUR3 Programs UR3

o Default

s o Rightc
| @ o Select'
- | Programs URS o Select.

Admin. Passw

pymo@m_n URSim UR10 To moc

egotiate.pc...
4 5
— pythonclient_c
Wireshark Shvure peap...

Select the [GO to initializing screen]

E‘LJ o yersal Robots Graphica J‘-':-'c gramming Environment
Q File 09:29:16 CCCC @
Run [Move [1/0 | Log |

UNIVERSAL

Cannot Proceed

. ﬁ The Robot Cannot Proceed with Normal Operation:
Program: simp
Robot: NO CONTROLLER

| Go to initialization screen ” Not now l

i

- =

Status: Stopp

Time: 0014d13h20m36.856s

i

Jamal Muhammad

First press [OFF] button
Second press [ON] button
Third press [START] button

Final state looks like this —

) . U-nlversal Robots Graphical Pllogrammlng Environment T S
Initialize Robot @
Make sure that the installation and payload are correct and press the button with the green icon to initialize the robot.
Robot O Normal
Current Payload kg
START ‘ @ OFF
Installation file default ' ’ Load Installation
3D View
Q Qe
’ Configure TCP ‘
#
’ Configure Mounting 1
L]
L
¢ OK
Finally press the [OK] button.
Go to File > Exit.
I‘ i Universal Robots Graphical Programming Environmen

Q | File

Run [| B2 | 5ad ...

Log |
~~

T -~

UNIVERSAL
ROBOTS

ol

Variables
I(

Program: simpleMove

Jamal Muhammad

Press [Program Robot]

PolyScope Robot User Interface ¢

Please select

UNIVERSAL
ROBOTS

Program Robot

Setup Robot

About

Shutdown Robot

There are 3 different folders for storing the robot programs for UR3, UR5 and UR10. In the VM workstation
already there some programs stored in those folders for the ease of user.

Now Press [Load Program] and select any of the programs stored in the Folder [Programs UR5] (as we are
programming URS5 in this example) —

New Program

Load From File

Load Program

e

Use Template

Pick and Place

Empty Program

Jamal Muhammad

2 Universal Robots Graphical Programming Environment - 4+ %
Load Program e

Current Directory: |/home/urlursim-3.3.3.292/programs |v| | H fr " &

‘ D pickMove.urp

‘ D simpleMove.urp \

‘ D test_Ol.urp

Filename: l

Filter: |Universa| Robots Program files Iv

Open | | Cancel

Go to the Tab > Graphics and then press Play

3 Universal Robots Graphical Programming Environment o 2

Q File 09:45:37 CCCC 0
(‘Program | Installation | Move | 1/0 | Log
\ pickMove “Graphic

structure | Variables |

¥ Robot Progra Ty .
¢ :M‘:)vejmgram Q Q Q A n

o Waypoint_3
9V Movel

® Waypoint_5
= Set DO[0]=0n
= Wait: 0.5

5%

® Waypoint_6
9V Move)

o Waypoint_2
9V Movel

® Waypoint_1

= Set DO[0]=0ff

= Wait: 0.1
o Waypoint_4 4

CIS S e v
T I e

Jamal Muhammad

Pressing the [play] button will automatically take us to the Tab > [Automove]. Press and Hold the [Auto]
button until the robot is ready for simulation.

& Universal Robots Graphical Programming Environment =
® File 09:48:04 cccc ©

(Program ['Installation |"Move [/O [Log | Automove |

Move Robot into Position.

Hold down 'Auto’ to perform the movement shown. Release the button to abort.
Push 'Manual' to move the robot into position manually.

Auto

Manual

Now the final state looks like this, the robot controller is ready for simulation. Press the OK Button.

) Universal Robots Graphical Programming Environment - + X
@ File 09:51:56 ccce @
{Program [Installation | Move [1/O [Log | Automove |

Move Robot into Position.

Hold down 'Auto’ to perform the movement shown. Release the button to abort.
Push '‘Manual' to move the robot into position manually.

Auto

Manual

Speed =———4_J100% @ OK

Jamal Muhammad

Now we can run the simulation by pressing the Play button.

& Universal Robots Graphical Programming Environment - + X
& File 09:53:25 CCCC ﬂ
(‘Program [Installation | Move | 1/0 | Log
pickMove (Command | Graphics | Structure | Variables |
V Robot Program a 4
7V Movel K88 o [a]4]
@ Waypoint_3 '..
¢ ¥ Movel
@ Waypoint_S -
= Set DO[0]=0n
=Wait: 0.5]
° Waypoint_6
9 ¥ Move)
© Waypoint_2
¢ ¥ Movel
© Waypoint_1
= Set DO[0]=0ff

= Wait: 0.1
@ Waypoint_4 4

Rle]f=---p] ./ b i

Q nenron 1040 pees e [eersvonr || very |

How to Post-Process a robot program from Visual Components Premium
4.0

Open the Layout [UR5_testing.vcmx], there is a sample program with the UR5 robot in the robot. The target
here are —

a. Program the URS5 robot in VC Premium/Robotics.

b. Post process the UR5 robot program using the Post-Processor. User can find the Post-Processor
from Visual Components community.

c. Establish connection in between VC Premium/Robotics(Main machine) and PolyScope(in Virtual
Machine)

Export the post-processed program to Virtual Machine and load the program in PolyScope.
Run robot program in PolyScope and emulate the same movement in VC Premium/Robotics.

Run the program in VC Premium/Robotics and observe the robot movement.

HOME DRAWING MODELING CONNECTIVITY
=y
[

1= ez -
L—d e @ > O

/ Align o
Program Editor

Subprograms

Sample Program

Jamal Muhammad

Now using the post-processor export the robot program from VC to UR robot program file (*.script)

[] speed [[] color Highiight Restore Windows ABB Rapf RS to KRL

[] Acceleration [] stop at fimits [T Show v
‘:] Singularity l:‘ Message Panel Output

Limits Windows Fxport My Group

Statement Properties

[0X00 — * D

Save

4‘ - - e
mv| » Jamal Muhammad » Downloads » 04_Support 2017 » 01 January » URtesting v | 43 W Search UR testing pol

Organize v New folder =)

- Favorites

B Desktop
& Downloads
2| Recent Places

Logs

m

test 02.script
Development Guide

4 Libraries

&)l AppData |I
“5| Documents

\ & Music
&=/ Pictures

B videos

18 Computer
&, Local Disk (C:)
5# VC (\\atlas) (52)
¥ Muhamlal (\\atlas\user:

€l Network

File name: test_02.script -

Save as type:

[UR Robot Program file (*.script) v]
1

4 Hide Folders [Save } [Cancel l

You can find the Post Processor in Program tab as shown in above screenshot. When we open the post
processed file it shall be something like below.

File Edit Selection Find View Goto Tools Project Preferences Help

UR_script.py X test 02.script RTDE_reader.py

def test 02():
movej([-0.014417,-0.782716,0.776956,-0.011221,0.040680,0.006559],v=6.283185)
movel(p[-0.367653, -0.181292, 0.466071, 1.569944, -0.035081, -0.051454],v=1.000000)
movel(p[-0.622141, -0.181292, 0.466071, 1.569944, -0.035081, -0.051454],v=1.000000)
movel(p[-0.622141, -0.181292, ©.193585, 1.569944, -0.035081, -0.051454],v=1.000000)
movel(p[-0.331112, -0.181292, ©.193585, 1.569944, -0.035081, -0.051454],v=1.000000)
movel(p[-0.367653, -0.181292, ©.296552, 1.569944, -0.035081, -0.051454],v=1.000000)
movej([-0.014417,-0.782716,0.776956,-0.011221,0.040680,0.006559],v=6.283185)

end #test 02

test 02()

Jamal Muhammad

Copy the program to a USB Drive. The way we will be transferring the robot program from our main
machine to virtual machine is by using USB drive.

When we insert a USB drive it is usually found in the virtual machine, now the user needs to disconnect it
from virtual machine and connect it to the main machine. It can be done following way —

a. Go to VMware Workstation
b. Goto VM > Removable Devices > Silicon Motion USB Flash Disk(it will be different in your case) >
Disconnect(Connect to host)

2 (3) - VMware Workstation =
' Tabs Help
L !

() Power N ,
i *J) Removable Devices 4 : v CD/DVD (IDE) » |
‘1 Pause Ctrl+ShiftsP | v Network Adapter »
:1: {7y Send Ctrl+Alt+Del AuthenTec Fingerprint Sensor 14
13 Grab Input Ctrl+G Foxconn USB2.0 Camera r
45 B | Snapshot Silicon Motion USB Flash Disk Disconnect (ConnecNo host)

1)
Capture Screen Ctrl+Alt+PrtScn e t O PO I b c Change Icon...
v Show in Status Bar \

/ Manage
psbehsnatiles rtmg the simulator for different robot types are lo
G Settings... Ctrl+D

ﬂ.-a - -1 - R4 Ll 1 “r _ A S, o L

Now user needs to copy-paste the program into the USB disk and then re-connect the USB disk with the
VMware. Now user needs to use the tool —

VM > Removable Devices > Silicon Motion USB Flash Disk (it will be different in your case) >
Connect(Disconnect from host)

File Edit View Tabs Help

B0~ | & | O Power vl :
Library “J Removable Devices » | v CD/DVD (IDE) » |
Q) Typeherdtos Pause Ctrl+Shift+P | v Network Adapter »
= _,ln\ﬂy Compui. e Send Ctrl+Alt+Del AuthenTec Fingerprint Sensor »
 URSIm 3 Grab Input Ctrl+G Foxconn USB2.0 Camera '
£ Shared VM| % Snapshot . Silicon Motion USB Flash Disk Connect (Disconnect from Host) [}
Capture Screen Ctrl+Alt+PrtScn | e t 0 P O I b c ChangeIcon...
»/ Show in Status Bar
f Manage » \
i i e arting the simulator for different robot types areMoc:
GF Settings... Ctrl+D
L | -

Later Visual Components will develop a FTP connection to send/receive files in between Main machine &
Virtual Machine.

Jamal Muhammad

Reading the imported robot program into PolyScope
Go to [Structure] > Press [Script Code] and this will create a (Script) in the Robot Program tree.

2 Universal Robots Graphical Programming Environment CRNE, i) ¢

O File 10:45:21 cccc @
fProgram ["Installation | Move [/0 | Log |

| pickMove [command | Graphics

¥ Robot Program 1

B seript \ This 1s rogram Structure E{iitor

¢V Move) created
® Waypoin \
9 ¥ Movel Set placement of node |After selected | |w
® Waypoint_5
= Set DO[0]=0n Insert
= Wait: 0.5 (Basic [Advanced | Wizards |
@ Waypoint_6 |
9 ¥V Move]
® Waypoint_2 Loop SubProg
9 ¥ MovelL
o Waypoint_1 press this |
= Set DO[0]=0ff Assignment If ... else
= Wait: 0.1
® Waypoint_4 K X
Script Code| Event
Thread Switch
Edit
l 4 Move l | Copy | I Paste I | Suppress |
l ¥ Move I l Cut | I Delete I

Q][> -]
O renram 101] e ——Conoen e rrevious | nen® |

Go to Command tab and select File from the dropdown list

) Universal Robots Graphical Programming Environment =X
O File 10:50:24 CCcCC Q

(‘Program [Installation | Move [1/0 | Log |
pickMove Command | Graphics | Structure | Variables |

¥ Robot Program \»
B Script &
? ¥ Move) Script Code File []

° Waypoint_3
¢ ¥ Movel

° Waypoint_5

= Set DO[0]=0n [<No File Selected>

= Wait: 0.5

° Waypoint_6
¢ ¥ Move)

© Waypoint_2 e
¢ V¥ Movel

@ Waypoint_1

= Set DO[0]=0ff Clear

= Wait: 0.1

° Waypoint_4

Script code will be included from the selected file:

Edit

i Bl

L T—— FrT[T

Jamal Muhammad

Then press the Edit button.

..... e T el Bt TN

(Command | Graphics | Structure | Variables |

Script Code

Script code will be included from the selected file:
[<No File Selected>

| Edit
/ Save

Clear

HEE m

Then Press (Open)

[y Universal Robots Graphical Programming Environment =il
5 | B - | 4 | File Editor ©
Open Save Save As Delete Insert Exit

1
1 2 3 4 5 6 7 8 9 0 - + <<
q w e r t v u i o p [1
a s d f g h j k 1 : : <!

z X C v b n m 0 / %
Shift @ 4 L4

Jamal Muhammad

Now finally we need to select the imported robot program (post process
and load it to PolyScope.

ed from VC Premium/Robotics)

3

Universal Robots Graphical Programming Environment

Load Script File

- + x

©

CurWome/ur]ursim-&B. 3.292/programs
N

][+ |e]e]

Untitled. script
pickMove.script
D simpleMove. script

D test_Ol.script

test_02.script
select any program
and then press
(open) below.

Filename: |

Filter: [Script Code

=]

l Open][Cancel l

It will be read by the editor like below if reading is successful.

2

Universal Robots Graphical Programming Environment

1 E

Open

=

Save

"lg]

Save As

=

L
Delete

+m
Insert

Exit

File Editor

o

ik
2
3
E
5
6
7
8

9
,10
11

def test_02():
movej([-0.014417,-0.782716,0.776956,-0.011221,0.040680,0.006559],v=6,283185)
movel(p[-0.367653, -0.181292, 0.466071, 1.569944, -0.035081, -0.051454],v=1.000000)
movel(p[-0.622141, -0.181292, 0.466071, 1.569944, -0.035081, -0.051454],v=1.000000)
movel(p[-0.622141, -0.181292, 0.193585, 1.569944, -0.035081, -0.051454],v=1.000000)
movel(p[-0.331112, -0.181292, 0.193585, 1.569944, -0.035081, -0.051454],v=1.000000)
movel(p[-0.367653, -0.181292, 0.296552, 1.569944, -0.035081, -0.051454],v=1.000000)
movej([-0.014417,-0.782716,0.776956,-0.011221,0.040680,0.006559],v=6.283185)

end #test_02

12 test_02()|

1 2 3 4 5 6 7 8 9 0 - + <<
q w e r t ' u i o P [1
a s d f g h j k | i : +—
z X c v b n m ’ . / %
Shift @ 3 Y

Jamal Muhammad

Now press save and then exit.

) Universal Robots Graphical Programming Environment =i

| B & = = * || File Editor ©

Open Save Save As Delete Insert Exit.

1 deftest_02(): -
2 movej([-0.014417,-0.782716,0.776956,-0.011221,0.040680,0.006559],v=6.283185)

3 movel(p[-0.367653, -0.181292, 0.466071, 1.569944, -0.035081, -0.051454],v=1.000000)
4 movel(p[-0.622141, -0.181292, 0.466071, 1.569944, -0.035081, -0.051454],v=1.000000)
D movel(p[-0.622141, -0.181292, 0.193585, 1.569944, -0.035081, -0.051454],v=1.000000)
6 movel(p[-0.331112, -0.181292, 0.193585, 1.569944, -0.035081, -0.051454],v=1,000000)
7 movel(p[-0.367653, -0.181292, 0.296552, 1.569944, -0.035081, -0.051454],v=1.000000)
8 movej([-0.014417,-0.782716,0.776956,-0.011221,0.040680,0.006559],v=6.283185)

9 end #test_02
10

11

12 test_02() first press (Save), then

(Exit)

shift € & »

Now the user can see that loaded program as following.

(& Universal Robots Graphical Programming Environment O g
O File 11:02:36 CCCC 0

“Program | Installation | Move [1/0 [Log |

pickMove (Command | Graphics [Structure | Variables |

B Script: test_02.script

Script Code

Fove] Fie |~
® Waypoint_3
¢~V Movel 5 Script code will be included from the selected file:
® Waypoint_5 -
= Set DO[0]=0n ftest_02.script |
= Wait: 0.5 def test_02(): ;
; WA Edit
@ Waypoint_6 movej([-0.014417,-0.782716,0.776956,-0.011221,0.040680,0.006559],v=6. L————'
?-V Move] movel(p[-0.367653, -0.181292, 0.466071, 1.569944, -0.035081, -0.051454]
° Waypoint_2 movel(p[-0.622141, -0.181292, 0.466071, 1.569944, -0.035081, -0.051454]
¢~V Movel movel(p[-0.622141, -0.181292, 0.193585, 1.569944, -0.035081, -0.051454]
@ Waypoint_1 movel(p[-0.331112, -0.181292, 0.193585, 1.569944, -0.035081, -0.051454]
= Set DO[0]=0ff movel(p[-0.367653, -0.181292, 0.296552, 1.569944, -0.035081, -0.051454]
= Wait: 0.1 movej([-0.014417,-0.782716,0.776956,-0.011221,0.040680,0.006559],v=6.
@ Waypoint_4 end #test_02
test_02()
< i [[»

a' Simulation

I P E——t ermions | nen |

Jamal Muhammad

Now the user can delete the rest of the Program from the Program Tree and keep only the Script program if
he wishes.

=2 Universal Robots Graphical Programming Environment = 4. %
& File 11:04:53 CCcCcC 0
(‘Program | Installation | Move [1/0 | Log |
| pickMove Command | Graphics | Structure || Variables
]
¥V Robot Program
B serst teat 025t | Program Structur Editor
Set placement of node |After selpcted :
Insert
Basic | Advancpd | Wizards |
Moye Waypoint
Wait Set
Poplhp Halt
Commjent Folder
Edit
H Paste I l Suppress
Delete
Qe [T
g ilen:I]:zt)Il::t BE@E speed =——={100% I 4 Previous ” Next 5 |

Now user can go to Graphics > run the simulation.

&
O File

[‘Program [Installation | Move [1/0 [Log |
pickMove Command tructure [variables |

WV Robot Program e & § A

[Script: test_02.script
L i
-

(e[i]

Universal Robots Graphical Programming Environment

11:06:22

Q]| <2
L Simulation
OReaIRobot

| 4 Previous || Next = |

Jamal Muhammad

Server-Client connection and emulation

Now we need to find the IP address of the Virtual Machine. We can do it in following way -

Open Terminal (In Linux [VMware])

Type >> hostname -I

As an example we can assume we got the IP address of the VMware as

>>192.168.100.XXX

Go to Tab Connectivity > Universal Robots RTDE > Server > Edit Connection

Properties

Connected False

Server 192.168.100. | G

| Edit Connection... |

Then we set the IP address as we got from virtual machine. RTDE port number should be 30004. Then press
[Test Connection], if succeeded press [Apply].

Edit Connection

Connect to a new server or edit
connection parameters.

Robot controller address

Address
RTDE port

Timeout

Test Connection

Jamal Muhammad

Now we need to connect the server.

Connectivity Configuration

& Beckhoff ADS
£ OPCUA
~ & Universal Robots RTDE
= E Server
Digital outputs
‘ Joints from controller
Analog outputs
]1 5 Digital server to sim

—i= Analog server to sim

Connectivity Configuration

& Beckhoff ADS
& OPCUA
~ ¥ Universal Robots RTDE
Server
= Digital outputs
Joints from controller
Analog outputs i= Show Variables
Digital server to sim i== Add Variables

i= Analog server to sim @ Remove

5 4C10)
POIO)

Now connect the Variables in between Client(VC software) and Server(PolyScope in VMware), the variables

are -

RTDE Joints(Client_String Variable) and # actual_q(Server_Vector Variable)

which needs to be

connected. This is actually the joint values of robot constantly exported from PolyScope to VC software.

Create Variable Pairs
Include:
<
D Only selected components
| Component properties |:| Behaviour properties Signals

= (B urs URS
+ § Component properties URS
= b/ RTDEnterface URS OneToOnelnterface
45 RTDE Joints URS RTDE Joints String
+ 45 Inputs URS BooleanSignalMap
+ #s Outputs URS BooleanSignalMap
+ £} Behaviours URS

+ Gf‘ SuctionGripper SuctionGripper
+ (9 10Test I0Test
+ (9 UR10 UR10

Selected server: Server

Adding to group: Joints from controller

Pair Selected

+ ﬁ target_current

+ M target moment

- M actual_q
Ho

1]

4]
()]

+ [actual qd

o7 @ actual_current

+ [joint_control_output

o7 @joint_temperatures

+ &jomt_mode

String
String
String
Double
Double
Double
Double
Double
Double
String
String
String
String
String

Rl

VECTOR6D
VECTOR6D
VECTOR6D
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
VECTOR6D
VECTOR6D
VECTOR6D
VECTOR6D
VECTOR6INT32

MECTORAD.

Read-only
Read-only
Read-only
Read-only
Read-only
Read-only
Read-only
Read-only
Read-only
Read-only
Read-only
Read-only
Read-only
Read-only

e

Target joint currents
Target joint moments (i

Actual joint positions

Actual joint velocities
Actual joint currents
Joint control currents
Temperature of each jo

Joint control modes

A bl o b Vet

Jamal Muhammad

The Connected Variables section looks like following

Connected Variables

- = Server
+ igital outputs
oints from controller
RTDE Joints i #s | -001626712: -0.01626712: actual_q VECTOR6D
nalog outputs
igital server to sim

Analog server to sim

Now user needs to press [Run] in both VC software and PolyScope. User will see the emulation in action.

[URSim 33.3 292 (3) - VMware Workstation

file Edt Yiew VM Isbs Hep
M= R R C) (SN IR~ W]

Libeary x

Hone | 75 URSM333292(3)

i My Computer
» URSm333202(3)

& Universal Robots Graphical Programming Environment -+ x
O File 11:49:51 Leet. @
Program | Installation | Move | 1O | Log

B picimove Command | Graphics | Structure | Variables

St {9 Robot Program QaQqe o

8 Scripti test 02 script

CCCeéce

ted Variables

Q]| - A
@ Real Robor

4 Previous Next B

Average update time:

Average ph

Jamal Muhammad

Appendix

Universal Robots RTDE connection plugin

Can connect to Universal Robots’ CB3-series robot controllers that have the RTDE interface. The RTDE (Real
time data exchange) interface is available (and always enabled) in controllers with software version
3.2.19171 or newer*. The same RTDE interface is also available in the URSim robot controller simulator,
which is provided free of charge as a virtual machine on UR support website.

*This specific control software version requirement is from UR’s own sample RTDE client implementation.
The support website article just says control software version 3.3 or newer.

More information about the RTDE interface:

https://www.universal-robots.com/how-tos-and-fags/how-to/ur-how-tos/real-time-data-exchange-rtde-

guide-22229/

Plugin capabilities:

niversal Robots RTDE

L) VAL

¥ Connection Plugin Capabilities
@ Parallel update of servers.
& Paraliel update of variable groups.
0 Asynchronous writing of variables.
) Asynchronous reading of variables.

Server capabilities (always the same within this plugin):

I'Tl'ri'
44

@ Yariable value change events.

® Supports start, stop and reset cormmands.

@ Batch reading of variables.

@ Batch writing of varables.

(30 Asynchronous writing of variables.

() Asynchronous reading of variables.

© 'ecommended minimum fime between cyclic
updates: 8 ms.

RTDE protocol operation principles

The RTDE interface provides a cyclic stream of value updates from the controller, and listens for inputs. The
interface updates ie. sends and handles data packages at a fixed frequency. The RTDE interface is based on
a binary application level protocol transmitted over (insecure) TCP/IP socket communication. The robot
controller uses TCP port 30004 for the interface. The connection plugin’s RTDE client implementation uses
an automatically assigned (by .NET or possibly Windows) port for the socket.

The basic operation principle is that first the client configures with the server the data it wants to receive
and data it wants to send. This is done in the “configuration” mode. After configuration has been set, the
client can request the controller to enter “run” mode where the controller sends the requested data at the
fixed 125 Hz frequency, and the client can send its data at the rate it prefers. The “run” mode can also be
paused by request of the client to return to the “configuration” mode.

https://www.universal-robots.com/how-tos-and-faqs/how-to/ur-how-tos/real-time-data-exchange-rtde-guide-22229/
https://www.universal-robots.com/how-tos-and-faqs/how-to/ur-how-tos/real-time-data-exchange-rtde-guide-22229/

Jamal Muhammad

The data packages the client and controller send to each other are defined the “configuration” mode with
input and output recipes. Input is data flow from client to controller, and output is data flow from
controller to client. The recipes contain one or more variables from a known fixed set, and the associated
data packages contain values for all variables in the recipe.

The current version of the RTDE protocol supports only a single output recipe per client, but up to 255 input
recipes can be defined per client. Further, it is not possible to remove an input recipe without
disconnecting, only to create new ones. This means that adding or removing a variable pair, or activating or
deactivating a variable group always causes a recipe update. Since the recipe update can be only done in
the “configuration” mode, the RTDE client implementation automatically requests pausing from the
controller and then either redefines the output recipe shared between all variable groups or registers a
new input recipe for the activated variable group.

The RTDE protocol doesn’t provide any way to poll the controller for value updates. This causes some
limitations that differentiate the RTDE connection plugin from others. The RTDE connection plugin manages
a local cache of the variable values for all configured recipes (active variable groups). This allows using cyclic
update mode to read output recipe values at any desired frequency, and sending whole input recipe data
to the controller in event-based update mode. However, since the output recipe updates are received and
input recipe data is sent asynchronously, the update delay timing functionality of Connectivity core doesn’t
really work with the RTDE plugin. The times measured are only processing times to get data in or out of the
cache, they don’t include the network delay or even how old the received output recipe data is when the
cache is read using cyclic update mode.

Also note that since the controller handles the RTDE input recipe packages at a fixed rate (125 Hz nominal),
it will miss values if sent faster than that from the simulation. The controller uses only the last received
value for each variable if multiple values are received during the controller’s update cycle. The controller
input variable values are retained so they don’t need to be sent at a fixed rate. Mask variables are an
exception, they don’t retain their values between update cycles, see “Input mask variables”.

Connection settings

The connection settings include the robot controller’s IP address or host (dns) name, the RTDE port on the
controller, and timeout. The port should always be the same default value 30004, it is included just for
future proofing. The timeout (in milliseconds) is used for initial connect and synchronous operations
including all configuration changes to recipes.

Edit Connection X

Connect to a new server or edit connection
parameters.

Robot controller address

Address 192 168.100.157
RTDE port 30004
Timeout 5000

Test Connection

Jamal Muhammad

Controller address space

The RTDE interface specifies a fixed set of variables that each can be either read or written. The input
variables of the controller can’t be read by the client and output variables of the controller can’t be written.
However, there are some separate variables that enable reading and writing the same thing e.g. Digital
outputs of the controller.

Example:
Input to controller (write-only in Connectivity feature): standard_digital_output
Output from controller (read-only in Connectivity feature): actual_digital_output_bits

The RTDE address space doesn’t have hierarchy, and variables can only be read or written as a whole as
part of recipe data packages. However, since the Connectivity core only handles basic data types, the RTDE
connection plugin provides access to components of vector variables and single bits of integer variables.
The single bit access is needed because the controller’s digital inputs and outputs are only available as
integers, not single Booleans. The connection plugin also provides read access (writing not supported) to
vector output variables from the controller as strings. The vector’s elements are converted to decimal
strings, using full precision for floating point values and a period “.” as decimal delimiter. The element
strings are then joined with a single space character as delimiter.

The RTDE connection plugin uses a hardcoded information model of the server address space, which
provides browsing capability. This hardcoded model corresponds to the UR controller version 3.3. The RTDE
protocol doesn’t include functionality for retrieving information about available variables on the controller.
If new controller software versions add variables to the interface, those won’t be accessible without
updating the connection plugin.

The browsing functionality presents the variables in a more convenient hierarchical folder structure, and
creates child variable nodes for vector components and bits in integers. Vectors can also contain integer
variables, which can also be accessed bit by bit.

Jamal Muhammad

Vector variable browse example:

Server structure Data type Server type Access Description
=] = = - = = = = = -
+ Inputs
— = Outputs
1z timestamp Double DOUBLE Read-only Time elapsed since the controller was started [5]
+ i actual_digital_input_bits Ulnte4 UINTE4 Read-only Current state of the digital inputs.
+ i3 actual_digital_output_bits Ulnt64 UINTE4 Read-only Digital outputs
= = loint Variables
— rec target g String VECTORGD Read-only Target joint positions
e [0] Double DOUBLE Read-only
[Double DOUBLE Read-aonly
& 2] Double DOUBLE Read-only
= Bl Double DOUBLE Read-only
T[] Double DOUBLE Read-only
e [5] Double DOUBLE Read-only
+ rec target_qd String WECTORGD Read-only Target joint velocities
Cheimm \EFTADAR Doncd mnbs Torock inind accalombinne

Note that the robot RTDE interface variables use radians as unit of angle in variables such as current and
target joint values. This means that they can’t be directly paired to Value properties of DOF objects in the
UR robot Components. As of 27.1.2017, Jamal should have updated the UR robot components in eCat to
include a Python script, a string signal and an interface for updating the component’s joint values from the
actual_g variable on the robot controller. The script receives events from the signal, parses the value and
uses immediate move to jump the robot to the received pose.

Input mask variables

Four inputs to controller (see below) also have separate mask variables. These masks act as a filter for
applying the values sent by the client. The idea is that the RTDE client doesn’t necessarily want to overwrite
all bits in e.g. the variable that controls the robot’s “standard digital outputs”. This allows controlling some
bits of a variable from the robot program on the controller and some from RTDE clients. However, the RTDE
interface doesn’t allow more than one client to access the same controller input variable. These masks
create some limitations for using the input variables in Visual Components.

Selected server: Server

Adding to group: Analog outputs

Server structure Data type Server type Access Descriptiol
[®] mask *Tx @ ~ =] = =] = =] -
+ i: speed_slider_mask Ulnt32 UINT32 Write-only 0 = don't change speed slider with this input 1 = use speed_slider_fraction to set speed slider value
+ i: standard_digital_output_mask Byte UINT8 Write-only Standard digital output bit mask
+ i: configurable_digital_output_mask | Byte UINTS Write-only Configurable digital cutput bit mask
+ 1i: standard_snalog_output_mask Byte UINT8 Write-only Standard analog cutput mask. Bits 0-1: standard_analog_output 0 | standard_analog_cutput_1

Example: Conditions for modifying standard digital output state on the controller.

1. Variables standard_digital_output (UINT8) and standard_digital_output_mask (UINT8) must be
registered in the same input recipe.

2. For each bit to apply (set to high or low state) in standard_digital output, the value of
standard_digital_output_mask must have a 1 in the corresponding bit. These must arrive in the same
input recipe data package, meaning that setting the mask earlier or later won’t result in the digital
outputs actually changing on the controller. It seems that the mask is always reset to zero at the
controller after processing each input data package.

Jamal Muhammad

Effects of those conditions for the Connectivity feature are:

1. Controller input variables with masks must have the variable and mask variable in the same variable
group.

2. If event-based update mode is used, the mask should be set to a constant value, otherwise value
changes could get lost due to the changes being transmitted in different input data packages.

Supported data types

The Universal Robots RTDE connection plugin supports access to all available variables. All signed and
unsigned integer variables can be both paired directly or the individual bits paired as Booleans. Vectors can
be read as strings, but cannot be written as a whole.

Table 1: Supported data types of the RTDE interface

RTDE type .NET type Remarks
UINT8 System.Byte
UINT16 System.UInt16
INT32 System.Int32
UINT32 System.UInt32 VC integers are only signed 32 bit
UINT64 System.UInt64 VCintegers are only signed 32 bit
DOUBLE System.Double
VECTOR3D Converted to a single string by the connection plugin when read
from the controller. Elements (3 x DOUBLE) can be read and
System.String written separately.
VECTOR6D Converted to a single string by the connection plugin when read
from the controller. Elements (6 x DOUBLE) can be read and
System.String written separately.
VECTORG6INT32 Converted to a single string by the connection plugin when read
from the controller. Elements (3 x INT32) can be read and
System.String written separately.
VECTOR6UINT32 Converted to a single string by the connection plugin when read
from the controller. Elements (6 x UINT32) can be read and
System.String written separately.
Performance

The communication delay is mostly defined by the UR controller’s fixed update rate. Note that the timing
functionality of the Connectivity core is not accurate with this plugin, see 0 for more info.

Using event-based update mode is recommended for variable groups with data flow from server to
simulation unless the update rate is too high for the simulation to handle.

For simulation to server data flow, cyclic update mode is recommended, but setting update rate higher
than 125 Hz doesn’t provide any benefit. The controller uses only the last received value for each variable if
multiple values are received during the controller’s update cycle. Note that event-based update mode from
simulation to server may send lots of updates that get lost due to the controller’s update rate, and mask
variables may not work as expected due to the mask and the masked value arriving in different input recipe
value update packets.

Jamal Muhammad

Q&A
01. CONNECT POLYSCOPE TO 4.0 PRODUCT
e Does this only work with VC Premium/Robotics? (Yes/No, but with limitations)
e Only Premium and Robotics support Path statements.
e What limitations would there be for Essentials and Professional, which don’t support Path
statement?

Ans : The data connection works with any product that has the Connectivity feature.

02. JOGGING ROBOT
e Can you use Move tab in Polyscope to jog robot in 3D world in real-time? (Yes/No)

Ans : Yes, but the simulation needs to be running in VC for automatic updates because that’s how
the Connectivity feature works.

e Can you use Jog mode in 3D world to update robot in Polyscope in real-time? (Yes/No)

Ans : Not directly. A workaround would be to send joint values to general purpose registers on
Polyscope and have a robot program running that drives the robot to that position. Again the
simulation needs to be running on VC side for automatic updates.

03. IMPORT AND SIMULATE POLYSCOPE PROGRAM WITH 3D ROBOT

e File formats? (XML,JSON or something else)

e Table specifying what Polyscope statements are converted to in 3D robot program.

e Spec would need to account for differences in 4.0 products

e Are digital I/O imported? what happens to the analog 1/0?

e | would expect a conflict with signal mappings defined in Action Script.

e If you import and export that same program, would it work the same in Polyscope or would there
be lost data?

Ans : The whole point of this project is emulating UR Virtual Controller into VC
Premium/Robotics/Robotics, this question is out of consideration. To my knowledge the
conversion is one way only VC -> Polyscope.

04. EXPORT AND ANIMATE 3D ROBOT PROGRAM IN POLYSCOPE
e File formats? (XML,JSON or something else)

Ans : File format is plain text URScript Programming Language. File extension *script,; The binary
*urp format is not supported.

e Table specifying what statements are supported and converted to in Polyscope program.
e Does it really support conversion of Set statements since in Polyscope you would always update the
payload of the EOAT after grasp or release action?

Virtual Robot Controller (VRC)

The Virtual Robot Controller (VRC) Interface, that has been developed by automotive companies, robot and
simulator manufacturers, enables to integrate the software of robot controllers into simulation systems via
a standard interface. By this, the VRC-Interface enables controller simulation with high precision and a
crosswise coupling of any controller software with any simulation system.

Jamal Muhammad

Offline Robot Programming (OLP)

Off-line programming (OLP) is a robot programming method where the robot program is created
independent from the actual robot cell. The robot program is then uploaded to the real industrial robot for
execution. In off-line programming, the robot cell is represented through a graphical 3D model in a
simulator. Nowadays OLP and robotics simulator tools help robot integrators create the optimal program
paths for the robot to perform a specific task. Robot movements, reachability analysis, collision and near-
miss detection and cycle time reporting can be included when simulating the robot program. OLP does not
interfere with production as the program for the robot is created outside the production process on an
external computer. This method contradicts to the traditional on-line programming of industrial robots
where the robot teach pendant is used for programming the robot manually. The time for the adoption of
new programs can be cut from weeks to a single day, enabling the robotization of short-run production.

Post Processor for robot

A Post Processor defines how robot programs must be generated for a specific robot controller. A Post
Processor is a key component of simulation and offline programming of industrial robots. The Post-
Processor works with the off-line programming software to make sure the robot motion statement/output
or program is correct for a specific robot build. The Post Processor controls the format and syntax of the
program that is generated for the controller that controls a specific robot.

