

Contents
Python API for Matrix manipulation – vcMatrix ... 3

4DOF TRRR robot .. 6

Forward and Inverse Kinematics ... 9

Python API for Matrix manipulation – vcMatrix
vcMatrix is a 4x4 matrix and is generally used to perform linear transformations and contain the position

and orientation of objects.

Now we will try to discuss the above properties with example so the concept can be clear to the users.

We will take a robot which TCP can rotate in all roll-pitch-yaw direction. A good choice is Universal

Robot as it has special 6 axis kinematics with python. We can load the attached layout

[Kinematics_Solver_example.vcm], here is a Universal Robot UR3 loaded with a box in front of it and

also a component called [Co-ordinate system] which will help the user to visualize the matrix

manipulations.

Now open the python kinematics script and there you will see the following codes-

These were written extra out of main inverse kinematics calculation. There are some points taught to

the robot and those are P1, P2, P3 and P4. You can click on each of those points and see the values

which are being printed. In a summary the following explanations will help.

Normal Vector

Target.N.X – projection of TCP > X axis on World Frame > X axis

Target.N.Y – projection of TCP > X axis on World Frame > Y axis

Target.N.Z – projection of TCP > X axis on World Frame > Z axis

Orientation Vector

Target.O.X – projection of TCP > Y axis on World Frame > X axis

Target.O.Y – projection of TCP > Y axis on World Frame > Y axis

Target.O.Z – projection of TCP > Y axis on World Frame > Z axis

Approach Vector

Target.A.X – projection of TCP > Z axis on World Frame > X axis

Target.A.Y – projection of TCP > Z axis on World Frame > Y axis

Target.A.Z – projection of TCP > Z axis on World Frame > Z axis

The following marked screenshots will further help to understand the concept of Normal, Orientation

and Approach vectors. It’s important to know and understand the different terms in VC python

kinematics which includes Properties, Methods and Events. The VC python modules for solving

kinematics are-

vcMatrix

vcKinematics

vcKinObject

vcMotionTarget

vcMotionInterpolator

4DOF TRRR robot
The robot is from Nachi [EZ03-5525] and the Kinematic structure of this robot is:

Translation Joint (J1) > Rotary Joint (J2) > Rotary Joint (J3) > Rotary Joint (J4)

Below is a detailed breakdown of kinematic structure of the robot for solving the inverse kinematic

problem.

Forward and Inverse Kinematics
This is how the forward kinematics looks like inside the python kinematics behavior of the robot

component.

If you go into each link of the robot you will notice that it is exactly the same as the Forward kinematics

defined inside the OnForward() method inside python kinematics. It is important to make the

OnInverse() method inactive and then select Jog in the [Program] tab and see that the TCP is in right

place, if not we need to review our forward kinematics.

Now we will solve the inverse kinematics of this robot. The easiest ones to solve are the J1 and J4 of this

robot as one joint J1 translates in only Z direction and another joint J4 rotates along only one axis. J1 and

J4 are solved as below.

To realize what Ny and Nx means please see the explanation of Normal Vector in the beginning of this

documentation. T5.P.Z is simply the World Position Matrix > Z value of the target position.

Now we will solve the rest J2 and J4 as below.

Basically what is done here are first the values a24, d24, t5.P.X, t5.P.Y are calculated for every target and

then utilizing these values and the trigonometric functions sssa() the value of J2 and J3 calculated.

As this robot has 2 configuration for most positions so there is the iterative loop of –

[..for i in range(2)..] Inside which resides the solution of J2 and J3. The variable elbow changes in

between [+1,-1] for giving [Righty] or [Lefty] solution. Complete inverse solution looks like below.

